Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anim Sci Biotechnol ; 14(1): 56, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37032323

RESUMO

BACKGROUND: Liver fibrosis and hepatocellular carcinogenesis secondary to liver fibrosis are serious liver diseases with no effective treatments. Mori fructus aqueous extracts (MFAEs) have served as successful treatments for many types of liver injury including fibrosis although the molecular mechanisms are unknown at present. PURPOSE: To investigate the effect of MFAEs in alleviating acute and chronic liver injury and tried to decipher the underlying mechanism. METHODS AND RESULTS: Mice were divided into 5 groups (n = 8) for acute (groups: control, 0.3% CCl4, bifendate (BD), 100 and 200 mg/kg MFAEs, 7 d) and chronic (groups: control, 10% CCl4, BD, 100 and 200 mg/kg MFAEs, 4 weeks) liver injury study. Each mouse was injected intraperitoneally with 10 µL/g corn oil containing CCl4 expect the control group. HepG2 cells were used in vitro study. Eighteen communal components were identified by UPLC-LTQ-Orbitrap-MS. We utilized a mouse model for acute and chronic liver injury using CCl4 and MFAEs administration effectively blocked fibrosis and significantly inhibited inflammation in the liver. MFAEs activated the nuclear factor erythroid derived 2 like 2/heme oxygenase 1 (Nrf2/HO-1) pathway and promoted the synthesis of the antioxidants glutathione (GSH), superoxidedismutase (SOD) and glutathione peroxidase (GSH-Px) that resulted in reduced levels of CCl4-induced oxidative stress molecules including reactive oxygen species. These extracts administered to mice also inhibited ferroptosis in the liver by regulating the expression of Acyl-CoA synthetase long chain family member 4 (ACSL4), solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4), thus reducing the occurrence of liver fibrosis. Both in vivo and in vitro tests indicated that the mechanism of MFAEs protection against liver fibrosis was linked to activation of Nrf2 signaling. These effects were blocked in vitro by the addition of a specific Nrf2 inhibitor. CONCLUSION: MFAEs inhibited oxidative stress, ferroptosis and inflammation of the liver by activating Nrf2 signal pathway and provided a significant protective effect against CCl4-induced liver fibrosis.

2.
Ecotoxicol Environ Saf ; 251: 114527, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36628874

RESUMO

The aims of this study were to evaluated the effect and underlying mechanism of Gandankang (GDK) aqueous extract in alleviating the acute liver injury induced by carbon tetrachloride (CCl4) in vivo and in vitro. Mice were divided into 5 groups (n = 8) for acute (Groups: control, 0.3 % CCl4, BD (Bifendate), 1.17, 2.34 and 4.68 mg/kg GDK) liver injury study. 10 µL/g CCl4 with corn oil were injected interperitoneally (i.p) expect the control group. HepG2 cells were used in vitro study. The results showed GDK can effectively inhibit liver damage and restore the structure and function of the liver. In mechanism, GDK inhibited CCl4-induced liver fibrosis and blocked the NF-κB pathway to effectively inhibit the hepatic inflammatory response; and inhibited CCl4-induced oxidative stress by upregulating the Keap1/Nrf2 pathway-related proteins and promoting the synthesis of several antioxidants. Additionally, it inhibited ferroptosis in the liver by regulating the expression of ACSl4 and GPX4. GDK reduced lipid peroxide generation in vitro by downregulating the production of reactive oxygen species and Fe2+ aggregation, thereby inhibiting ferroptosis and alleviating CCl4-induced hepatocyte injury. In conclusion, we describe the potential complex mechanism underlying the effect of GDK against acute liver injury.


Assuntos
Tetracloreto de Carbono , Doença Hepática Induzida por Substâncias e Drogas , Camundongos , Animais , Tetracloreto de Carbono/toxicidade , Tetracloreto de Carbono/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fígado , Antioxidantes/metabolismo , Estresse Oxidativo , Transdução de Sinais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
3.
Antioxidants (Basel) ; 11(11)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36421420

RESUMO

AIM: To systematically evaluate the effect of Gandankang (GDK) aqueous extract in alleviating acute and chronic liver injury. Forty-one chemical compounds were identified by ultra-high performance liquid chromatography-linear trap quadrupole-orbitrap-tandem mass spectrometry (UHPLC-LTQ-Orbitrap-MS) from GDK. All dosages of GDK and Biphenyl diester (BD) improved CCl4-induced acute and chronic liver injury. GDK curbed liver fibrosis and blocked the NF-κB pathway to effectively inhibit the hepatic inflammatory response. Additionally, GDK treatment reduced the abundance of Phascolarctobacterium, Turicibacter, Clostridium_xlva, Atoprostipes, and Eubacterium, in comparison with those in the CCl4 mice and elevated the abundance of Megamonas and Clostridium_IV as evident from 16S rDNA sequencing. Correlation analysis showed that the abundance of Eubacterium and Phascolarctobacterium was positively correlated with inflammation, fibrosis, and oxidation indexes. This indicates that GDK ameliorates chronic liver injury by mitigating fibrosis and inflammation. Nrf2 pathway is the key target of GDK in inhibiting liver inflammation and ferroptosis. Eubacterium and Phascolarctobacterium played a vital role in attenuating liver fibrosis.

4.
Ecotoxicol Environ Saf ; 245: 114118, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36174321

RESUMO

Mori fructus aqueous extracts (MFAEs) have been used as a traditional Chinese medicine for thousands of years with the function of strengthening the liver and tonifying the kidney. However, its inner mechanism to alleviative renal injury is unclear. To investigate the attenuation of MFAEs on nephrotoxicity and uncover its potential molecular mechanism, we established a nephrotoxicity model induced by carbon tetrachloride (CCl4). The mice were randomly divided into control group, CCl4 model group (10% CCl4), CCl4 + low and high MFAEs groups (10% CCl4 + 100 mg/kg and 200 mg/kg MFAEs). We found that MFAEs decreased the kidney index of mice, restored the pathological changes of renal structure induced by CCl4, reduced cystatin C, neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule 1 (Kim-1) blood urea nitrogen and creatinine contents in serum, promoted the nuclear transportation of Nrf2 (nuclear factor erythroid derived 2 like 2), elevated the expression of HO-1 (heme oxygenase 1), GPX4 (glutathione peroxidase 4), SLC7A11 (solute carrier family 7 member 11), ZO-1 (zonula occludens-1) and Occludin, suppressed the expression of Keap1 (kelch-like ECH-associated protein 1), HMGB1 (High Mobility Group Protein 1), ACSL4 (acyl-CoA synthetase long chain family member 4) and TXNIP (thioredoxin interacting protein), upregulated the flora of Akkermansia, Anaerotruncus, Clostridium_sensu_stricto, Ihubacter, Alcaligenes, Dysosmobacter, and downregulated the flora of Clostridium_XlVa, Helicobacter, Paramuribaculum. Overlapped with Disbiome database, Clostridium_XlVa, Akkermansia and Anaerotruncus may be the potential genera treated with renal injury. It indicated that MFAEs could ameliorate kidney injury caused by CCl4 via Nrf2 signaling.


Assuntos
Microbioma Gastrointestinal , Proteína HMGB1 , Animais , Tetracloreto de Carbono/metabolismo , Tetracloreto de Carbono/toxicidade , Coenzima A/metabolismo , Creatinina , Cistatina C/metabolismo , Proteína HMGB1/metabolismo , Heme Oxigenase-1/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Rim/metabolismo , Ligases/metabolismo , Lipocalina-2/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Ocludina/metabolismo , Estresse Oxidativo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Tiorredoxinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...